Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Instabilities in oscillating loops are believed to be essential for dissipating the wave energy and heating the solar coronal plasma. Our aim is to study the development of the Kelvin-Helmholtz (KH) instability in an oscillating loop that is driven by random footpoint motions. Using the PLUTO code, we performed 3D simulations of a straight gravitationally stratified flux tube. The loop footpoints are embedded in chromospheric plasma, in the presence of thermal conduction and an artificially broadened transition region. Using drivers with a power-law spectrum, one with a red noise spectrum and one with the low-frequency part subtracted, we excited standing oscillations and the KH instability in our loops, after one-and-a-half periods of the oscillation. We see that our broadband drivers lead to fully deformed, turbulent loop cross-sections over the entire coronal part of the loop due to the spatially extended KH instability. The low RMS velocity of our driver without the low-frequency components supports the working hypothesis that the KH instability can easily manifest in oscillating coronal loops. We report for the first time in driven transverse oscillations of loops the apparent propagation of density perturbations due to the onset of the KH instability, from the apex towards the footpoints. Both drivers input sufficient energy to drive enthalpy and mass flux fluctuations along the loop, while also causing heating near the driven footpoint of the oscillating loop, which becomes more prominent when a low-frequency component is included in the velocity driver. Finally, our power-law driver with the low-frequency component provides a RMS input Poynting flux of the same order as the radiative losses of the quiet-Sun corona, giving us promising prospects for the contribution of decayless oscillations in coronal heating.
Instabilities in oscillating loops are believed to be essential for dissipating the wave energy and heating the solar coronal plasma. Our aim is to study the development of the Kelvin-Helmholtz (KH) instability in an oscillating loop that is driven by random footpoint motions. Using the PLUTO code, we performed 3D simulations of a straight gravitationally stratified flux tube. The loop footpoints are embedded in chromospheric plasma, in the presence of thermal conduction and an artificially broadened transition region. Using drivers with a power-law spectrum, one with a red noise spectrum and one with the low-frequency part subtracted, we excited standing oscillations and the KH instability in our loops, after one-and-a-half periods of the oscillation. We see that our broadband drivers lead to fully deformed, turbulent loop cross-sections over the entire coronal part of the loop due to the spatially extended KH instability. The low RMS velocity of our driver without the low-frequency components supports the working hypothesis that the KH instability can easily manifest in oscillating coronal loops. We report for the first time in driven transverse oscillations of loops the apparent propagation of density perturbations due to the onset of the KH instability, from the apex towards the footpoints. Both drivers input sufficient energy to drive enthalpy and mass flux fluctuations along the loop, while also causing heating near the driven footpoint of the oscillating loop, which becomes more prominent when a low-frequency component is included in the velocity driver. Finally, our power-law driver with the low-frequency component provides a RMS input Poynting flux of the same order as the radiative losses of the quiet-Sun corona, giving us promising prospects for the contribution of decayless oscillations in coronal heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.