2005
DOI: 10.1103/physrevlett.94.174104
|View full text |Cite
|
Sign up to set email alerts
|

Transitions to Electrochemical Turbulence

Abstract: We report experimental evidence of transitions from limit cycle oscillations through a phase turbulent regime to space-time defect turbulence in a spatially (quasi-)one-dimensional electrochemical system with nonlocal coupling. The transitions are characterized in terms of the defect density, the KarhunenLoève decomposition dimension, and a measure of the degree of spatial correlation in the data. Furthermore, these quantities give the first experimental confirmation that the spatial coupling range in electroc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

5
44
0
4

Year Published

2007
2007
2020
2020

Publication Types

Select...
6
2
1

Relationship

3
6

Authors

Journals

citations
Cited by 59 publications
(53 citation statements)
references
References 22 publications
5
44
0
4
Order By: Relevance
“…In this case, the applied current reflects the electron flow through the solid/liquid interface and is a measure of the departure from equilibrium in the system, similarly to the potential difference across the solid/liquid interface under potentiostatic control. 38,39 A general overview of the oscillatory dynamics is given in Figure 3 in terms of the potential oscillations obtained during a galvanodynamic sweep (dI/dt ) 5 µA s -1 ) at different temperatures. Potential oscillations are born at low current values via a subcritical Hopf bifurcation and disappear at high current values through a saddle-loop bifurcation, where the limit cycle collides with the fixed point in the oxygen evolution branch, similar to the behavior observed for related systems.…”
Section: Resultsmentioning
confidence: 99%
“…In this case, the applied current reflects the electron flow through the solid/liquid interface and is a measure of the departure from equilibrium in the system, similarly to the potential difference across the solid/liquid interface under potentiostatic control. 38,39 A general overview of the oscillatory dynamics is given in Figure 3 in terms of the potential oscillations obtained during a galvanodynamic sweep (dI/dt ) 5 µA s -1 ) at different temperatures. Potential oscillations are born at low current values via a subcritical Hopf bifurcation and disappear at high current values through a saddle-loop bifurcation, where the limit cycle collides with the fixed point in the oxygen evolution branch, similar to the behavior observed for related systems.…”
Section: Resultsmentioning
confidence: 99%
“…Uma grande motivação para tais estudos reside na utilização de análogos químicos como modelos funcionais 5 no estudo de padrões de atividade em sistemas biológi-cos, obviamente, bem mais complexos e menos tratáveis 6 . Exemplos de sistemas físico-químicos, cujas propriedades emergentes vêm sendo estudadas recentemente incluem processos heterogêne-os nas interfaces sólido/gás [7][8][9] e sólido/líquido [10][11][12] , assim como reações homogêneas como no caso dos osciladores da família do bromato [13][14][15][16] .…”
Section: Propriedades Emergentes E Sistemas Complexosunclassified
“…Pode-se afirmar o efeito de iluminação tem sido pouquíssimo explorado nesse sistema até então 25,26 . Tais investigações assumem importância vital tendo em vista que estudos sobre a formação e manipulação de padrões espaço-temporais na presença de diferentes tipos de acoplamentos espaciais é considerada atualmente uma das áreas mais ativas de pesquisa no ramo de auto-organização dinâmica 11,12,27 . /acetona/Mn(II)-ferroína operado em regime de batelada.…”
Section: A Reação De Belousov-zhabotinskyunclassified
“…More formally, Zoldi and Greenside [35,36,37,38] suggested using PCA for determining the number of degrees of freedom in spatially extended systems by considering the minimum number of principal components required to describe a fraction f (0<f<1) of a multivariate record. Let i 2 , i=1,…,N, again be the non-negative eigenvalues of the associated correlation matrix S given in descending order.…”
Section: Kld Dimension Densitymentioning
confidence: 99%