A previous study by our research group showed that sirtuin5 (SIRT5), a member of the class III NAD+-dependent deacetylase family, is highly expressed in colorectal cancer (CRC). The present study showed that deletion of SIRT5 induced cell cycle arrest and apoptosis as a result of continuous and irreparable DNA damage in CRC cells, a consequence of the impaired production of ribose-5-phosphate (R5P) which is essential for nucleotide synthesis. Consistently, the cell cycle arrest and apoptosis induced by SIRT5 silencing could be reversed by supplementation with four nucleotides. Moreover, metabolic profiling revealed that silencing of SIRT5 could inhibit the non-oxidative pentose phosphate pathway (PPP), which produces R5P, required for base ribosylation. Notably, SIRT5 activates transketolase (TKT), the key enzyme in the cellular non-oxidative PPP, by mediating its lysine demalonylation through the interaction between SIRT5 and TKT. Furthermore, the results demonstrated that TKT is essential for the SIRT5-induced malignant phenotypes of CRC, both in vivo and in vitro. These results therefore revealed that the increased lysine malonylation levels of TKT caused by silencing SIRT5 suppresses non-oxidative pentose phosphate metabolism, leading to a low-nucleotide pool. This in turn induces DNA damage in tumor cells and inhibits proliferation, suggesting that SIRT5 may serve as a potential anticancer target.