Protein L7/L12 of the bacterial ribosome plays an important role in activating the GTP hydrolytic activity of elongation factor G (EF-G), which promotes ribosomal translocation during protein synthesis. Previously, we cross-linked L7/L12 from two residues (209 and 231) flanking ␣-helix A G in the G subdomain of Escherichia coli EF-G. Here we report kinetic studies on the functional effects of mutating three neighboring glutamic acid residues (224, 228, and 231) to lysine, either singly or in combination. Two single mutations (E224K and E228K), both within helix A G , caused large defects in GTP hydrolysis and smaller defects in ribosomal translocation. Removal of L7/L12 from the ribosome strongly reduced the activities of wild type EF-G but had no effect on the activities of the E224K and E228K mutants. Together, these results provide evidence for functionally important interactions between helix A G of EF-G and L7/L12 of the ribosome.