Graphene nanochannels are relevant for their possible applications, as in water purification, and for the challenge of understanding how they change the properties of confined liquids. Here, we use all-atom molecular dynamics simulations to investigate water confined in an open graphene slit-pore as a function of its width w, down to sub-nm scale. We find that the water translational and rotational dynamics exhibits an oscillatory dependence on w, due to water layering.The oscillations in dynamics correlate with those in hydration pressure, which can be negative (hydrophobic attraction), or as high as ∼ 1 GPa, as seen in the experiments. At pore widths commensurable with full layers (around 7.0Å and 9.5Å for one and two layers, respectively), the free energy of the system has minima, and the hydration pressure vanishes. These are the separations at which the dynamics of confined water slows down. Nevertheless, the hydration pressure vanishes also where the free energy has maxima, i.e., for those porewidths which are incommensurable with the formation of well-separated layers, as w 8.0Å. Around these values of w, the dynamics is faster than in bulk, with water squeezed out from the pore. This behavior has not been observed for simple liquids under confinement, either for water in closed nano-pores. The decomposition of the free energy clarifies the origins of the dynamics speedups