Supraphysiological concentrations (SPCs) of triiodo-l-thyronine (T3) have been used in the treatment of a number of nonviral diseases. However, the signaling mechanisms that regulate the function of T3 at these concentrations and their role in modulating cellular stress pathways and antiviral responses are unknown. Here, we have investigated the effects of SPCs of T3 on integrated stress response (ISR) signaling pathways and the replication of vesicular stomatitis virus (VSV). T3 amplified Poly IC-induced activation of RNA-dependent protein kinase, induced phosphorylation of eIF2α, stress granule (SG) formation, IRE1α phosphorylation, XBP1 splicing, and the expression of stress markers. T3 inhibited VSV replication by modulating SG formation and the expression of stress response markers. ISR activator guanabenz also inhibited VSV replication and amplified T3-induced anti-VSV response. To summarize, we have uncovered novel functions of T3 at SPCs as an activator of ISR signaling pathways and an inhibitor of VSV replication. This study offers a proof of principle of the concept that ISR activating agents like SPC of T3 and guanabenz can be potential antiviral agents.