The rotational angular momentum polarizations of product molecules of the title reactions on the ground potential energy surface 1 (2)A' of DHTSN [Deskevic et al. J Chem Phys 2006, 124, 224303] have been studied using the quasi-classical trajectory method. Reaction dynamic results of the HF product channel comparing with another channel of HCl with 100,000 trajectories can be accurately resolved. We show the value of the polar p(ϑr) in the range of 0° ≤ ϑr ≤ 180(°), azimuthal p(φr) in the range of 0° ≤ φr ≤ 360(°), and dihedral p(ϑr, φr) in the ranges of 0(°) ≤ ϑr ≤ 180(°) and 0(°) ≤ φr ≤ 360(°); the angular distributions of the product molecules HF and HCl at relative Erel = 0.5, 1, 2, 5, 10, 15, and 20 kcal mol(-1); and four polarization-dependent differential cross sections (PDDCSs) of HF and HCl at Erel = 0.5, 1, 2, 5, 10, and 15 kcal mol(-1). p(φr) distributions at v = 0-5, and j = 0, 3, 6, 9 at every Erel are plotted cylindrically together. The stereo dynamic transformation reaction dependent upon the rovibrational states of the reactant molecule FCl and its relative translational energies around 0.5-5 kcal mol(-1) can be significantly differentiated. Translational and rovibrational enhancements of the title reactions on both early barrier potential energy surfaces have been shown in great detail and clarified. Reaction mechanisms of forward and backward scattering of the product molecules HF and HCl, respectively, have been obtained. Graphical Abstract H + FCl → either HF + Cl (left) or HCl + F (right) is moving along a trajectory on the respective PES.