The process of aeolian sand transport is an important mechanism leading to the formation and evolution of local landforms in coastal areas and desert lakes. For a long time, the role of surface moisture in incipient motion of sand grains by wind stress has been extensively studied but, in fact, sand-bed collision is the main mechanism in steady aeolian sand flow. At present, the lack of understanding of surface moisture content on sand-bed collision limits the application of aeolian sand transport models in wet coastal areas. In this paper, we adopt numerical simulations to discuss and analyze the effect of cohesive forces formed by surface moisture content on the sand-bed collision process based on discrete element method. High density contact forces appear with the surface moisture increasing, and form a closed structure around the edge of crater to resist the avulsion in horizontal direction. Under high moisture condition, even though the ejected sand grains saltate away from the surface, the tension forces will prevent from leaving. The ejected number trend with incident velocity shows some nonlinear characteristics due to the unequally distributed force chains and liquid bridges in the unsaturated sand bed surface.