Block deformation analysis as deformation density of atomic orbitals is introduced to analyze intramolecular interactions. In this respect, density matrix blocks in terms of natural atomic orbitals are employed to find interacting and noninteracting multicenter subsystem and extract the corresponding deformation density. Eigenanalysis of this deformation density is performed to result eigenvalues and eigenorbitals as displaced charge due to the intramolecular interaction and orbital space responsible for charge reorganization, respectively, that possesses advantages of other methods, simultaneously. It is applied to several small molecules, different types of carbon allotropes including zero-, one-, and two-dimensional nanostructures, and challenging systems such as ortho-hydrogen atoms in planar biphenyl. Results highly correlate with delocalization and Wiberg bond indices and show that eigenvalues of block deformation analysis deserved to be considered as bonding index.