2011
DOI: 10.1016/j.jmmm.2011.07.003
|View full text |Cite
|
Sign up to set email alerts
|

Transmission fingerprints in quasiperiodic magnonic multilayers

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
3
0

Year Published

2012
2012
2024
2024

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 10 publications
(5 citation statements)
references
References 17 publications
1
3
0
Order By: Relevance
“…Some thermodynamical quantities, namely, the free Gibbs energy, the entropy and the specific heat, were obtained from the solutions of the tight-biding equation for the electronic energy spectra of quasiperiodic Fibonacci and double-period unidimensional superlattices. Our main results are the equation (19), which generalizes several previous results (where the authors did not make use of the appropriate nonextensive algebra) and the absence of a q value which makes the system extensive, as reported in other works [51,57]. At higher temperatures, the specific heat decreases as T −2 , which is a typical characteristic of systems with a bounded energy spectrum.…”
Section: Discussionsupporting
confidence: 85%
See 1 more Smart Citation
“…Some thermodynamical quantities, namely, the free Gibbs energy, the entropy and the specific heat, were obtained from the solutions of the tight-biding equation for the electronic energy spectra of quasiperiodic Fibonacci and double-period unidimensional superlattices. Our main results are the equation (19), which generalizes several previous results (where the authors did not make use of the appropriate nonextensive algebra) and the absence of a q value which makes the system extensive, as reported in other works [51,57]. At higher temperatures, the specific heat decreases as T −2 , which is a typical characteristic of systems with a bounded energy spectrum.…”
Section: Discussionsupporting
confidence: 85%
“…Several interesting experimental studies have been reported in last two decades, like the transmission of bulk acoustic phonons [7], surface acoustic waves [8], photonic dispersion relation [9] and localization of light waves [10][11][12], to cite a few. From a theoretical point of view, the behavior of a variety of particles or quasiparticles, such as electrons [13], phonons [14,15], photons [16,17], polaritons [18] and magnons [19] were inves-tigated. For example, recently, Tanese et al [20] have reported a fractal energy spectrum of a polariton gas confined in a quasiperiodic one-dimensional cavity described by a Fibonacci sequence.…”
Section: Introductionmentioning
confidence: 99%
“…12, and secondly, since the micromagnetic simulations for the inclusion had to be performed at a single value of the applied magnetic field and for a single set of magnetic parameters. At the same time, magnonic metamaterials with more complex arrangements [44][45][46][47] of magnetic inclusions could also prove interesting from both applied and fundamental points of view. In principle, the methodology presented in this paper could be extended to such arrangements as well as to systems with variation of the inclusions' properties (including, e.g., systems with defect states 48,49 ) and with other (e.g., nondipolar) forms of coupling between inclusions.…”
Section: Resultsmentioning
confidence: 99%
“…The quasiperiodic Fibonacci sequence is already adopted in photonic [49,147], phononic [148] and electronic systems [149,150]. The Fibonacci sequence has also been implemented in the magnonic system [99,151,152]. The SW dynamics of connected nanostripes made of cobalt and permalloy and arranged in the form of the Fibonacci sequence has been studied by Rychly et al [101].…”
Section: Fibonacci Quasiperiodic Mcsmentioning
confidence: 99%