Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
AGENCY USE ONLY (Leave blank)
REPORT DATEDecember 2015
REPORT TYPE AND DATES COVERED
12a. DISTRIBUTION / AVAILABILITY STATEMENTApproved for public release; distribution is unlimited 12b. DISTRIBUTION CODE
ABSTRACT (maximum 200 words)The aim of this work is to develop a metamaterial absorber that can be incorporated into a terahertz (THz) imaging system with a 4.7 THz quantum cascade laser (QCL) illumination source. Finite element (FE) simulations were utilized to design metamaterials, and a Fourier transform infrared spectrometer (FTIR) was employed to characterize the absorption spectrum of each metamaterial configuration. Process parameters for future work with the microfabrication devices have been established for the Naval Postgraduate School clean room. Analysis of experimental data provided insight in determining the refractive index of the metamaterial dielectric, SiO x , from 3-8 THz and confirmed the Lorentzian shape for the absorption spectrum as theoretically proposed by another group. Future work will incorporate the metamaterial absorber design of this research into a more efficient, cost effective, bi-material THz sensor that can be employed in a variety of naval applications.
SUBJECT TERMS