The reflection coefficients of monochromatic water waves over trenches with shear current are estimated analytically. The diffraction of waves by an abrupt depth change and shear current is formulated by the matched eigenfunction expansion method. The proper number of steps and evanescent modes are proposed by a series of convergence tests. The accuracy of the predicted reflection coefficients is checked by estimating the wave energy. Reflection and transmission characteristics are studied for various shear current conditions. The different combinations of strength, width of shear current, and incident wave angle with constant water depth topography are examined. The optimal figure of the trench with shear current is obtained by estimating the reflection coefficients for various sloped transitions. The resonant reflection of the water waves is found by multiarrayed optimal trenches and the interaction of sinusoidally varying topography with shear current.