Investigating a virus’s host range and cross-infection is important for better understanding the epidemiology and emergence of viruses. Previously, our research group discovered a natural infection of a plant RNA virus, cumber mosaic virus (genus Cucumovirus, family Bromoviridae), in a plant pathogenic basidiomycetous fungus, Rhizoctonia solani, isolated from a potato plant grown in the field. Here, we further extended the study to investigate whether similar cross-infection of plant viruses occurs widely in plant-associated fungi in natural conditions. Various vegetable plants such as spinach, leaf mustard, radish, celery, and other vegetables that showed typical virus-like diseases were collected from the fields in Shandong Province, China. High-throughput sequencing revealed that at least 11 known RNA viruses belonging to different genera, including Potyvirus, Fabavirus, Polerovirus, Waikavirus, and Cucumovirus, along with novel virus candidates belonging to other virus genera, infected or associated with the collected vegetable plants, and most of the leaf samples contained multiple plant viruses. A large number of filamentous fungal strains were isolated from the vegetable leaf samples and subjected to screening for the presence of plant viruses. RT-PCR and Sanger sequencing of the PCR products revealed that among the 169 fungal strains tested, around 50% were carrying plant viruses, and many of the strains harbored multiple plant viruses. The plant viruses detected in the fungal isolates were diverse (10 virus species) and not limited to particular virus genera. However, after prolonged maintenance of the fungal culture in the laboratory, many of the fungal strains have lost the virus. Sequencing of the fungal DNA indicated that most of the fungal strains harboring plant viruses were related to plant pathogenic and/or endophytic fungi belonging to the genera Alternaria, Lecanicillium, and Sarocladium. These observations suggest that the nonpersistent acquisition of plant viruses by fungi may commonly occur in nature. Our findings highlight a possible role for fungi in the life cycle, spread, and evolution of plant viruses.