Abstract-Comprehensive understanding of the ventricular response to shocks is the approach most likely to succeed in reducing defibrillation threshold. We propose a new theory of shock-induced arrhythmogenesis that unifies all known aspects of the response of the heart to monophasic (MS) and biphasic (BS) shocks. The central hypothesis is that submerged "tunnel" propagation of postshock activations through shock-induced intramural excitable areas underlies fibrillation induction and the existence of isoelectric window. We conducted simulations of fibrillation induction using a realistic bidomain model of rabbit ventricles. Following pacing, MS and BS of various strengths/timings were delivered. The results demonstrated that, during the isoelectric window, an activation originated deep within the ventricular wall, arising from virtual electrodes; it then propagated fully intramurally through an excitable tunnel induced by the shock, until it emerged onto the epicardium, becoming the earliest-propagated postshock activation. Differences in shock outcomes for MS and BS were found to stem from the narrower BS intramural postshock excitable area, often resulting in conduction block, and the difference in the mechanisms of origin of the postshock activations, namely intramural virtual electrode-induced phase singularity for MS and virtual electrode-induced propagated graded response for BS. This study provides a novel analysis of the 3D mechanisms underlying the origin of postshock activations in the process of fibrillation induction by MS and BS and the existence of isoelectric window. Comprehensive knowledge and appreciation of the mechanisms by which a shock interacts with the heart is the approach most likely to succeed in reducing shock energy.The presence of an isoelectric window (IW) following unsuccessful defibrillation attempts 3-5 led to the understanding that an electric shock terminates ongoing fibrillation but then reinitiates it; hence the mechanisms of fibrillation induction and its reinitiation (unsuccessful defibrillation) are the same. Indeed, striking similarities between these mechanisms have been found, particularly with regard to propagation of the first global postshock activation (PA) and IW duration. 4 -6 The similarity is supported by the significant correlation between upper limit of vulnerability (ULV) and DFT. 7,8 Therefore, elucidating the origin of PAs resulting in fibrillation induction is expected to provide invaluable insight into the mechanisms of defibrillation failure and could contribute significantly to the effort to find novel ways to appreciably lower DFT.Although numerous hypotheses 9 -12 exist for the mechanisms of PA origin, none provides comprehensive mechanistic explanation of the following findings:1. Earliest PA following near-ULV (or near-DFT) shocks occurred after the epicardium recovered completely from shock-induced direct excitation. 3,5 2. IW increased as shock strength increased. 4,6,13 3. For both monophasic (MS) and biphasic (BS) shock waveforms, earliest PAs a...