An unsaturated polyester, based on maleic anhydride, 1,6-hexanediol, and trimethylol propane, was formulated with tetraethylorthosilicate (TEOS) oligomers and a coupling agent to prepare inorganic/organic hybrid films. TEOS oligomers were prepared through the hydrolysis and condensation of TEOS with water, and 3-(triethoxysilyl)propylisocyanate was used as the coupling agent between the organic and inorganic phases. The hybrid materials were cured by moisture via sol-gel chemistry and by the UV curing of unsaturated polyesters. To compare the properties of the moisture-cured inorganic/organic hybrid films, a conventional 2K polyurethane system was also prepared. The tensile, adhesion, abrasion, and fracture toughness properties were investigated as functions of the coupling agent and relative amount of UV cure versus thermal cure. Although no difference could be observed in the tensile properties, the abrasion resistance, fracture toughness, and adhesion were enhanced by the incorporation of TEOS oligomers into polyurethane films. Also, the abrasion resistance, fracture toughness, and tensile properties were increased with both moisture and UV exposure.