c Decomposition of plant residues is largely mediated by soil-dwelling microorganisms whose activities are influenced by both climate conditions and properties of the soil. However, a comprehensive understanding of their relative importance remains elusive, mainly because traditional methods, such as soil incubation and environmental surveys, have a limited ability to differentiate between the combined effects of climate and soil. Here, we performed a large-scale reciprocal soil transplantation experiment, whereby microbial communities associated with straw decomposition were examined in three initially identical soils placed in parallel in three climate regions of China (red soil, Chao soil, and black soil, located in midsubtropical, warm-temperate, and cold-temperate zones). Maize straws buried in mesh bags were sampled at 0.5, 1, and 2 years after the burial and subjected to chemical, physical, and microbiological analyses, e.g., phospholipid fatty acid analysis for microbial abundance, community-level physiological profiling, and 16S rRNA gene denaturing gradient gel electrophoresis, respectively, for functional and phylogenic diversity. Results of aggregated boosted tree analysis show that location rather soil is the primary determining factor for the rate of straw decomposition and structures of the associated microbial communities. Principal component analysis indicates that the straw communities are primarily grouped by location at any of the three time points. In contrast, microbial communities in bulk soil remained closely related to one another for each soil. Together, our data suggest that climate (specifically, geographic location) has stronger effects than soil on straw decomposition; moreover, the successive process of microbial communities in soils is slower than those in straw residues in response to climate changes.