We investigate interactions between two (parallel) arrays of two-level atoms (2LA) via photons through quantum electrodynamical interaction with one array (the source array) connected to a particle source, and we study the (photo-)resistivity of the other array (the measured array). The wave function of the interacted photon propagating in an array is a Bloch wave with a gap in its eigenvalue (the photonic dispersion). Due to interactions between arrayed 2LA and the dressed photonic field with non-linear dispersion, the conduction behaviors of the measured array can be very diversified according to the input energy of the particle source connected to the source array, and their relative positions. As a result, the resistivity of the measured array can be zero or negative, and can also be oscillatory with respect to the incoming energy of the particle source of the source array, and the separation between arrays.