In this paper we investigate the shear viscoelasticity and the hydrodynamic modes in a holographic solid model with several sets of axions that all break the translations spontaneously on boundary. Comparing with the single-axion model, the shear modulus is enhanced at high temperatures and the shear viscosity is always suppressed in the presence of additional axions. However, the different sets of axions exhibit competitive relationship in determining the shear modulus at low temperatures. Furthermore, by calculating the black hole quasi-normal modes, it is found that adding more axions only increases the amount of diffusive modes. The number of the sound modes always remains unchanged.