In this chapter, we review the experimental and theoretical modeling of structural and dynamical properties of colloidal magnetic fluids at equilibrium. Presently, several prototype experimental systems are very well characterized. We survey the different models, which help to reach a comprehensive knowledge of these complex magnetic fluids. One prime example is the ongoing investigation of the realistic interparticle potentials that drive the formation of the different phase states observed experimentally. Further, a stochastic equation approach for the description of tracer diffusion, viscoelasticity, and dielectric relaxation at equilibrium in colloidal ferrofluids is discussed.