We report capacitive coupling induced Kondo–Fano (K–F) interference in a double quantum dot (DQD) by systematically investigating its low-temperature properties on the basis of hierarchical equations of motion evaluations. We show that the interdot capacitive coupling U
12 splits the singly-occupied (S-O) state in quantum dot 1 (QD1) into three quasi-particle substates: the unshifted S-O0 substate, and elevated S-O1 and S-O2. As U
12 increases, S-O2 and S-O1 successively cross through the Kondo resonance state at the Fermi level (ω = 0), resulting in the so-called Kondo-I (KI), K–F, and Kondo-II (KII) regimes. While both the KI and KII regimes have the conventional Kondo resonance properties, remarkable Kondo–Fano interference features are shown in the K–F regime. In the view of scattering, we propose that the phase shift η(ω) is suitable for analysis of the Kondo–Fano interference. We present a general approach for calculating η(ω) and applying it to the DQD in the K–F regime where the two maxima of η(ω = 0) characterize the interferences between the Kondo resonance state and S-O2 and S-O1 substates, respectively.