A new model, partially based on the three most widely cited previous hypotheses, is proposed to explain the genesis of the Canary Islands. From the hotspot hypothesis it retains the notion that the islands originated from a thermal anomaly in the mantle. From the propagating fracture hypothesis it takes the critical role of regional fractures in the onset of magmatism. The uplifted block hypothesis contributes with the notion that the islands are in their present freeboard attitude due to the action of tectonic forces.The main drawbacks of the three preceding hypotheses are solved within this unifying approach: the thermal anomaly is an upper mantle residue from an old plume, and therefore it does not carry (or does it in a highly diluted form) the typical geophysical and geochernical plume signatures; the fractures are well developed on the continental and oceanic crust, but not in the extremely thick sedimentary pile between the Canary Islands and Africa; and the Canary Islands uplift took place through transpressive shears, and not by means of purely reverse faults. This unifying model, which integrates the thermal and tectonic histories of the lithosphere and the sublithospheric mantle, is considered to be a valid approach to a number of volcanic areas where, as has been highlighted in recent years, pure hotspot or pure fracture models are found wanting to explain oceanic or (less frequently) continental volcanic lines.