2013
DOI: 10.1007/s11232-013-0044-y
|View full text |Cite
|
Sign up to set email alerts
|

Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach

Abstract: Formulas for transverse conductance in quantum collisional plasma are deduced. The kinetic equation in momentum space in the relaxation approach is used. It is shown, that at → 0 the derived formula transfers to the classical one. It is shown also, that when electron collision frequency tends to null (i.e. plasma becomes collisionless), the conductance formula transfers in the known formula inferred earlier by Lindhard.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
18
0
3

Year Published

2014
2014
2020
2020

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 23 publications
(21 citation statements)
references
References 20 publications
0
18
0
3
Order By: Relevance
“…The expression for the transverse conductivity of a degenerate collisional plasma is determined by the general formula [8] …”
Section: Magnetic Susceptibility Of a Quantum Degenerate Plasmamentioning
confidence: 99%
See 3 more Smart Citations
“…The expression for the transverse conductivity of a degenerate collisional plasma is determined by the general formula [8] …”
Section: Magnetic Susceptibility Of a Quantum Degenerate Plasmamentioning
confidence: 99%
“…We use expression (8) to derive formula (10) for the Landau diamagnetism. For z = iy = 0, formula (8) for the magnetic susceptibility of a quantum collisionless degenerate plasma implies the expression…”
Section: Landau Diamagnetism Of a Quantum Collisionless Degenerate Plmentioning
confidence: 99%
See 2 more Smart Citations
“…В этих работах использовалось кинетическое уравнение Вигнера-Власова-Больцмана в релаксационном приближении в коорди-натном пространстве. В работе [9] была выведена формула для поперечной элек-трической проводимости квантовой столкновительной плазмы с использованием ки-нетического уравнения в подходе Мермина (в пространстве импульсов).…”
Section: Introductionunclassified