Traumatic brain injury (TBI) is a risk factor for developing Alzheimer's disease (AD).Additionally, TBI induces AD-like amyloid β (Aβ) plaque pathology within days of injury potentially resulting from massive accumulation of amyloid precursor protein (APP) in damaged axons. Here, progression of Aβ accumulation was examined using brain tissue from 23 cases with post-TBI survival of up to 3 years. Even years after injury, widespread axonal pathology was consistently observed and was accompanied by intra-axonal co-accumulations of APP with its cleavage enzymes, beta-site APP cleaving enzyme and presenilin-1 and their product, Aβ. However, in marked contrast to the plaque pathology noted in short-term cases post TBI, virtually no Aβ plaques were found in long-term survivors. A potential mechanism for Aβ plaque regression was suggested by the post-injury accumulation of an Aβ degrading enzyme, neprilysin. These findings fail to support the premise that progressive plaque pathology after TBI ultimately results in AD.