The equality of healthcare services has been a focus among researchers and policymakers. The maximal accessibility equality (MAE) model is a widely used location-allocation model for the optimization of the accessibility equality of facilities. However, it might produce biased results due to the overlooking of multiple transport mode options for urban residents. This study develops a maximal multimodal accessibility equality (MMAE) model by incorporating the multimodal two-step floating catchment area (2SFCA) accessibility model. It reflects the multimodal context in cities and aims to maximize the equality of multimodal accessibility. A case study of healthcare facilities in Shenzhen demonstrates that the proposed MMAE model can significantly improve the equality of multimodal accessibility. However, the traditional single-modal MAE model generates unequal multimodal accessibility, which might yield biased planning recommendations in multimodal contexts. The findings highlight the superiority of the MMAE model against the traditional single-modal MAE model in terms of pursuing equal accessibility for all residents. The MMAE model can serve as a scientific tool to support the rational planning of healthcare facilities or other types of public facilities in multimodal contexts.