2009
DOI: 10.1049/iet-its:20080013
|View full text |Cite
|
Sign up to set email alerts
|

Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
82
0
3

Year Published

2014
2014
2021
2021

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 161 publications
(86 citation statements)
references
References 4 publications
1
82
0
3
Order By: Relevance
“…Studies have been done on real time bus arrival time prediction for Indian conditions by taking delay explicitly into account using Kalman Filtering using GPS probe vehicle (Padmanaban et al, 2010;Vanajakshi et al, 2008). A travel time prediction model has been using Resource Tracking and Management Ser vice (RTMS) facility prov ided by mobile network prov ider (BSNL) on mobile SIMpassenger cards using buses as probes (Satyakumar et al, 2014).…”
Section: Reviewmentioning
confidence: 99%
“…Studies have been done on real time bus arrival time prediction for Indian conditions by taking delay explicitly into account using Kalman Filtering using GPS probe vehicle (Padmanaban et al, 2010;Vanajakshi et al, 2008). A travel time prediction model has been using Resource Tracking and Management Ser vice (RTMS) facility prov ided by mobile network prov ider (BSNL) on mobile SIMpassenger cards using buses as probes (Satyakumar et al, 2014).…”
Section: Reviewmentioning
confidence: 99%
“…Оценка времени прохождения ОТС конкретного сегмента. Модель адаптивной композиции элементарных прогнозов Конструируемая оценка (9) должна учитывать следующие специфики величины (8). Во-первых, эта величина характеризует время прохождения сегмента w k совершенно конкретным транспортным средст-вом с идентификатором ID (w 0 , j) .…”
Section: частный случай (однородная по времени модель)unclassified
“…Также в оценке времени прибытия широко использу-ются модели, основанные на фильтрации Калмана [8,9,10]. Хотя основной функцией моделей такого рода является прогноз текущего состояния системы, они могут служить основой для оценки будущих значений или для исправления предыдущих прогнозов.…”
Section: Introductionunclassified
“…Availability of the big traffic data stimulates great interests of researchers, engineers and public departments to extract underlined traffic dynamics, in order to understand traffic state evolution for better management of urban transportation. Along this direction, most published works of traffic data analysis focus on mining temporal dynamics of individual or small groups of links (either in arterial network or express ways) using model-driven [8] [24]. The model-driven methods, like Cellular Automata [12] and other underlying physical models [8] [9][10] [11] [16][17] [18], are usually calibrated with structural assumptions to simulate temporal evolution of traffic states.…”
Section: Introductionmentioning
confidence: 99%