1976
DOI: 10.1029/wr012i003p00487
|View full text |Cite
|
Sign up to set email alerts
|

Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed

Abstract: Flood runoff has been traced from seven inje.ction points to the outlet of a 96-acre watershed. Each radioactivity time record at the outlet provides a hydrograph of outflow of the labeled drop of water. The results yield direct information on the flood process of a type and accuracy not possible from conventional analysis of rainfall and runoff records. The relationships of travel time and average velocity with discharge are examined together with the variations of these relationships over the watershed. Aver… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

2
55
0
7

Year Published

1996
1996
2011
2011

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 114 publications
(64 citation statements)
references
References 12 publications
2
55
0
7
Order By: Relevance
“…These observations are (1) there is significant uncertainty in HG relationships in terms of considerable scatter in the log-log plots, (2) a single power law cannot reproduce the change in slope and sometimes discontinuities in HG near bank-full conditions [e.g., see Pilgrim, 1976;Wong and Laurenson, 1984;Bates, 1990], and (3) a mixed distribution might be needed to represent discharges, especially for both below and above bank-full conditions [e.g., see Singh and Sinclair, 1972;Leytham, 1984;LeBoutillier and Waylen, 1993]. Here we propose an extension of the lognormal multiscaling model to a mixed bivariate lognormal multiscaling model which can accommodate the above considerations.…”
Section: Future Extensionmentioning
confidence: 99%
See 1 more Smart Citation
“…These observations are (1) there is significant uncertainty in HG relationships in terms of considerable scatter in the log-log plots, (2) a single power law cannot reproduce the change in slope and sometimes discontinuities in HG near bank-full conditions [e.g., see Pilgrim, 1976;Wong and Laurenson, 1984;Bates, 1990], and (3) a mixed distribution might be needed to represent discharges, especially for both below and above bank-full conditions [e.g., see Singh and Sinclair, 1972;Leytham, 1984;LeBoutillier and Waylen, 1993]. Here we propose an extension of the lognormal multiscaling model to a mixed bivariate lognormal multiscaling model which can accommodate the above considerations.…”
Section: Future Extensionmentioning
confidence: 99%
“…[3] For at-station HG, the single power law relationships are widely used although some deviations from a single power law have been reported in the literature, either as a change in the exponent in the log-log plot of velocity and discharge with increasing discharge, or in general as loss of log-log linearity when discharge increases [e.g., Richards, 1976;Wong and Laurenson, 1984;Bates, 1990;Pilgrim, 1976]. In contrast, the log-log linearity in downstream HG has been supported by many empirical [Carlston, 1969;Park, 1977] and theoretical [Parker, 1979;Huang et al, 2002] studies.…”
Section: Introductionmentioning
confidence: 99%
“…이는 선형적 특성을 갖는 단위유량도 이론의 유용성과 적용의 간편성 으로 인하여 국내 도입 초창기 연구 (김상용, 1972; 건설 부, 1974; 윤용남과 선우중호, 1975; 윤용남과 심순보, 1976; 김재한과 이원한, 1980 등) 이후부터 최근 연구 (안 태진 등, 2000; 정성원과 문장원, 2001; 허창환과 이순탁, 2002; 김주철 등, 2003; 전민우, 2003; 성기원, 2008; 김홍 태와 신현석, 2009 등)까지 이어 온 것이다. 그러나 실제 유 역 유출이 단위유량도 가정 사항에 부합되는지에 대한 논 란이 계속되어 왔다 (Minshall, 1960;Amorocho and Orlob, 1961;Amorocho, 1963;Amorocho and Hart, 1964;Singh, 1964;Diskin, 1964;Kulandaiswamy, 1964;Dooge, 1967;Pilgrim, 1976;Singh, 1979;1988;선우중호, 2006;유주환, 2010b 등 …”
Section: 연구 목적 및 배경unclassified
“…즉 강우가 유역 시스템에 입력되어 홍수량으로 유출되는 경우 유역을 시불변한 (Time-Invariant) 선형 시스템(Linear System)으로 보 는 것이다. 그러나 실제적으로 유역 유출에서 이와 같은 선형성(Linearity)의 가정에 대한 논란은 오래되어 왔다 (Minshall, 1960;Amorocho and Orlob, 1961;Amorocho, 1963;Amorocho and Hart, 1964;Singh, 1964;Diskin, 1964;Kulandaiswamy, 1964;Dooge, 1967;Pilgrim, 1976;Singh, 1979;1988). 그럼에도 불구하고 비선형 유출해석 의 어려움에 비하여 단위유량도 이론의 간편성 때문에 국 내에서도 단위유량도에 관하여 많이 연구되고 이용되어 왔다 (김상용, 1972; 건설부, 1974; 윤용남과 선우중호, 1975; 윤용남과 심순보, 1976; 김재한과 이원한, 1980; 선 우중호와 고영찬, 1986; 이순탁과 박종권, 1987; 이정식 등, 1987; 한국건설기술연구원, 1989; 권오헌 등, 1993; 김 재한과 윤석영, 1993; 전시영, 1994; 김상단 등, 2000; 박진 욱 등, 2000; 안태진 등, 2000; 정성원과 문장원, 2001; 허 창환과 이순탁, 2002; 김주철 등, 2003; 전민우, 2003; 신현 석 등, 2004; 성기원, 2008; 김홍태와 신현석, 2009 Class A Sample Classified Derived Unit Hydrographs by the Rainstorms Ⅰ G1-3 G1-3, G1-4, G1-8, G1-10, G2-4 Ⅱ G2-3 G1-1, G1-2, G1-7, G1-9, G2-2, G2-3, G2-5, G2-6, G2-10, G2-12, G2-14, G2-16 Ⅲ G2-13 G2-1, G2-9, G2-11, G2-13, G2-15 Ⅳ G1-6 G1-5, G1-6, G2-7, G2-8 …”
unclassified