We investigate the dynamics of traveling oscillating solitons of the cubic nonlinear Schrödinger (NLS) equation under an external spatiotemporal forcing of the form f (x,t) = a exp[iK(t)x]. For the case of time-independent forcing, a stability criterion for these solitons, which is based on a collective coordinate theory, was recently conjectured. We show that the proposed criterion has a limited applicability and present a refined criterion which is generally applicable, as confirmed by direct simulations. This includes more general situations where K(t) is harmonic or biharmonic, with or without a damping term in the NLS equation. The refined criterion states that the soliton will be unstable if the "stability curve" p(v), where p(t) and v(t) are the normalized momentum and the velocity of the soliton, has a section with a negative slope. In the case of a constant K and zero damping, we use the collective coordinate solutions to compute a "phase portrait" of the soliton where its dynamics is represented by two-dimensional projections of its trajectories in the four-dimensional space of collective coordinates. We conjecture, and confirm by simulations, that the soliton is unstable if a section of the resulting closed curve on the portrait has a negative sense of rotation.