“…In order to better understand and explain the nonlinear phenomena, finding exact solutions to the NPDEs has become an important focus of scholars' attention and research. In the past half century, mathematicians and physicists have been dedicated to studying exact solutions to NPDEs, including the Jacobi elliptic function expansion approach [12], modified generalized exponential rational function method [13], direct algebraic approach [14], (G'/G 2 )-expansion method [15], variational approach [16], trial-equation technique [17,18], Bäcklund transformation approach [19,20], subequation approach [21,22], Darboux transformation technique [23,24], exp-function approach [25], modified Kudryashov method [26], extended F-Expansion approach [27], sinh-Gordon equation expansion method [28] and so on. Although mathematical physicists have developed a large number of methods, it has been found that, due to the diversity and complexity of NPDEs, there is currently no unified method to solve them, and often only the corresponding methods can be selected based on specific equations.…”