Abstract-People with motor-incomplete spinal cord injury (m-iSCI) can recover basic walking function but still have difficulty performing the skilled walking required for everyday environments. We hypothesized that a robotic-based gait rehabilitation strategy founded on principles of motor learning would be a feasible and potentially effective approach for improving skilled walking in people with m-iSCI. Fifteen individuals with chronic (>1 yr) m-iSCI were randomly allocated to body weight-supported treadmill training (BWSTT) with Lokomat-applied resistance (Loko-R) or conventional Lokomat-assisted BWSTT (Control). Training sessions were 45 min, 3 times/week for 3 mo. Tolerance to training was assessed by ratings of perceived exertion and reports of pain/ soreness. Overground skilled walking capacity (Spinal Cord Injury-Functional Ambulation Profile [SCI-FAP]), as well as walking speed and distance, were measured at baseline, posttraining, and 1 and 6 mo follow-up. Our results indicate that Loko-R training could be feasibly applied for people with miSCI, although participants in Loko-R tended to report higher levels of perceived exertion during training. Participants in the Loko-R group performed significantly better in the SCI-FAP than Control at posttraining and in follow-up assessments. This study provides evidence that Loko-R training is feasible in people with m-iSCI. Furthermore, there is preliminary evidence suggesting that Loko-R may help improve performance in skilled overground walking tasks.
Clinical Trial