Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BackgroundG. sulfurreducens is one of the commonest microbes used in microbial fuel cells (MFCs) for organic-to-electricity biotransformation. In MFCs based on this microorganism, electrons can be conveyed to the anode via three ways: 1) direct electron transfer (DET) mode, in which electrons of reduced c-type cytochromes in the microbial outer membrane are directly oxidized by the anode; 2) mediated electron transfer (MET) mode, in which the reducing potential available from cell metabolism in the form of NADH is targeted as an electron source for electricity generation with the aid of exogenous mediators; and 3) a putative mixed operation mode involving both electron transfer mechanisms described above (DET and MET). However, the potential of G. sulfurreducens for current output in these three operation modes and the metabolic mechanisms underlying the extraction of the reducing equivalents are still unknown.ResultsIn this study, we performed flux balance analysis (FBA) of the genome-scale metabolic network to compute the fundamental metabolic potential of G. sulfurreducens for current output that is compatible with reaction stoichiometry, given a realistic nutrient uptake rate. We also developed a method, flux variability analysis with target flux minimization (FATMIN) to eliminate futile NADH cycles. Our study elucidates the possible metabolic strategies to sustain the NADH for current production under the MET and Mixed modes. The results showed that G. sulfurreducens had a potential to output current at up to 3.710 A/gDW for DET mode, 2.711 A/gDW for MET mode and 3.272 A/gDW for a putative mixed MET and DET mode. Compared with DET, which relies on only one contributing reaction, MET and Mixed mode were more resilient with ten and four reactions respectively for high current production.ConclusionsThe DET mode can achieve a higher maximum limit of the current output than the MET mode, but the MET has an advantage of higher power output and more flexible metabolic choices to sustain the electric current. The MET and DET modes compete with each other for the metabolic resource for the electricity generation.
BackgroundG. sulfurreducens is one of the commonest microbes used in microbial fuel cells (MFCs) for organic-to-electricity biotransformation. In MFCs based on this microorganism, electrons can be conveyed to the anode via three ways: 1) direct electron transfer (DET) mode, in which electrons of reduced c-type cytochromes in the microbial outer membrane are directly oxidized by the anode; 2) mediated electron transfer (MET) mode, in which the reducing potential available from cell metabolism in the form of NADH is targeted as an electron source for electricity generation with the aid of exogenous mediators; and 3) a putative mixed operation mode involving both electron transfer mechanisms described above (DET and MET). However, the potential of G. sulfurreducens for current output in these three operation modes and the metabolic mechanisms underlying the extraction of the reducing equivalents are still unknown.ResultsIn this study, we performed flux balance analysis (FBA) of the genome-scale metabolic network to compute the fundamental metabolic potential of G. sulfurreducens for current output that is compatible with reaction stoichiometry, given a realistic nutrient uptake rate. We also developed a method, flux variability analysis with target flux minimization (FATMIN) to eliminate futile NADH cycles. Our study elucidates the possible metabolic strategies to sustain the NADH for current production under the MET and Mixed modes. The results showed that G. sulfurreducens had a potential to output current at up to 3.710 A/gDW for DET mode, 2.711 A/gDW for MET mode and 3.272 A/gDW for a putative mixed MET and DET mode. Compared with DET, which relies on only one contributing reaction, MET and Mixed mode were more resilient with ten and four reactions respectively for high current production.ConclusionsThe DET mode can achieve a higher maximum limit of the current output than the MET mode, but the MET has an advantage of higher power output and more flexible metabolic choices to sustain the electric current. The MET and DET modes compete with each other for the metabolic resource for the electricity generation.
The need for safe and good quality drinking water is growing rapidly worldwide, especially with increased urbanization and population growth. However, increasing pollution of surface waters, often by wastewater effluents, has made water treatment more difficult and expensive. Furthermore, most water resources, especially surface waters in industrialized and urban areas in developing countries, are quickly deteriorating as a result of uncontrolled waste discharges into receiving waters, which may also serve as drinking water sources. Consequently, this has led to the occurrence of potentially harmful organic micropollutants (OMPs) in drinking water treatment systems and ultimately in drinking water.This study has been carried out within the framework of the European research project SWITCH (Sustainable Urban Water Management Improves Tomorrow's City's Health). SWITCH is supported by the European Commission under the 6th Framework Programme and contributes to the thematic priority area of "Global Change and Ecosystems" [1.1.6.3] Contract n° 018530-2. This study also partly supported by K-Water, UNESCO fellowship and Halla Energy and Environment. I would like to thank following MSc students for their supports (Mohammed Ibrahim, Emmanuel Ameda, Sharada Devkota, Henny Simarmata and Chol Abel). I want to express my great gratitude to Aleksandra Magic-Knezev, who helped me for allowing the use of advanced facilities in HetWaterlaboratorium. I would like to acknowledge the help of Theo van der Kaaij and Ineke van der Veer-Agterberg (HetWaterlaboratorium) for the support on LC-OCD/OND and ATP measurements. I want to express my gratitude to Dr. Gesche Grützmacher for advices and suggestions and the data from KWB Berlin. I want to thank Dr. Frank Sacher for analytical support for measuring pharmaceutically active compounds. I want to thank Karin Lekkerkerker for the support on translating samenvatting and proposition.The members of UWS and laboratory staff in UNESCO-IHE have been a marvellous source of advices, supports, and ideas. Thanks go to Tanny van der Klis, Fred Kruis, Don van Galen, Peter Heerings, Lyzette Robbmont, Frank Widgman and Jolanda Boots. Special thanks should also go to the friends that maintained my sanity throughout Ph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.