Breast cancer is a malignant tumor that seriously threatens women's health, and luminal-like cancer subtypes account for the majority of the cases. The purpose of this study was to investigate the relationships among DNA methylation, gene expression profile, and the tumor-immune microenvironment of luminal-like breast cancer, and to identify the potential key genes that regulate immune cell infiltration in luminal-like breast cancer. The ESTIMATE algorithm was applied to calculate immune scores and stromal scores of patients with breast cancer. Kaplan-Meier curves were generated for survival analysis. The clusterProfile package was used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The protein-protein interaction (PPI) network was constructed using the STRING database and Cytoscape software. Correlations between ADCY6 expression and immune cell infiltration-related pathways were analyzed by gene set variation analysis. R software was used for the statistical analysis and figure generation. Disease-free survival was higher in the immune score-high group than it was in the immune score-low group, while the stromal score had no correlation with prognosis. There were 515 genes that differed in both gene expression and DNA methylation levels, and these genes were mainly enriched in immune process-related pathways. ADCY6 was enriched in module A of the PPI network. Patients with downregulation and hypermethylation of ADCY6 associated with a better prognosis. ADCY6 expression was negatively correlated with the activation of immune process-related signaling pathways, immune checkpoint receptors, and ligands, except for CLEC4G. DNA methylation was found to be involved in the regulation of the key cellular pathways of luminallike breast cancer immune cell infiltration. Additionally, ADCY6 was identified as a prognostic factor involved in the DNA methylation-regulated immune processes in luminal-like breast cancer. K E Y W O R D S ADCY6, DNA methylation, luminal-like breast cancer, tumor-immune microenvironment