Treatment choice, mean square regret and partial identification
Toru Kitagawa,
Sokbae Lee,
Chen Qiu
Abstract:We consider a decision maker who faces a binary treatment choice when their welfare is only partially identified from data. We contribute to the literature by anchoring our finite-sample analysis on mean square regret, a decision criterion advocated by Kitagawa et al. in (2022) "Treatment Choice with Nonlinear Regret" . We find that optimal rules are always fractional, irrespective of the width of the identified set and precision of its estimate. The optimal treatment fraction is a simple logistic transformati… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.