2021
DOI: 10.48550/arxiv.2103.07788
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Treatment Effect Estimation using Invariant Risk Minimization

Abstract: Inferring causal individual treatment effect (ITE) from observational data is a challenging problem whose difficulty is exacerbated by the presence of treatment assignment bias. In this work, we propose a new way to estimate the ITE using the domain generalization framework of invariant risk minimization (IRM). IRM uses data from multiple domains, learns predictors that do not exploit spurious domain-dependent factors, and generalizes better to unseen domains. We propose an IRM-based ITE estimator aimed at tac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?