Purpose A bioelectricity producing system was configured by connecting to a microbial electrolysis cell producing hydrogen, in which both systems were without mediator, to treatment the landfill leachate of the and generate bioelectricity and hydrogen. Methods The anode electrode was made with MWCNTs polyscale coating on graphite felt and the cathode electrode with activated carbon coating on carbon cloth. In the MFC-MEC coupled system, the electrodes were connected in series using copper wire. The system was set up in a fed-batch mode and the landfill synthetic leachate was injected into the anode MFC-MEC chamber as fuel.
ResultsIn MFC, the highest voltage, current density and power density were 1114 mV, 44.2A/m 3 and 49.24 W/m 3 , respectively. The maximum of the coulombic efficiency system was 94.10%. The highest removed COD, NH 4 -N and P was 97.38%, 79.56% and 74.61%, respectively. In the MEC, the maximum of voltage input, current density and power density was 1106 mV, 43.88 A/m 3 and 48.54 W/m 3 , respectively. The maximum coulombic efficiency system was 125.54%. Also the highest removed COD, NH 4 -N and P was 97.46%, 78.81% and 76.25%, respectively. The highest biogas production rate and its yield were 39 mL/L.d, and 0.0118 L/g CODrem, respectively. Conclusion This study found that the MFC-MEC coupled system had promising potential for strong wastewaters treatment, such as the leachate of landfill; and the in-site use of generated electricity and the production of useful fuels such as biogas.