HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.3D static and time-dependent modelling of a dc transferred arc twin torch systemTo cite this version: Abstract. The transferred arc plasma torch device consists of two electrodes generating a plasma arc sustained by means of an electric current flowing through the body of the discharge. Modeling works investigating of transferred electric arc discharges generated between two suspended metallic electrodes, in the so called twin torch configuration, are scarce. The discharge generated by this particular plasma source configuration is characterized by a complex shape and fluid dynamics and needs a 3D description in order to be realistically predicted. The extended discharge length that goes from the tungsten pencil cathode to the flat copper anode without any particular confinement wall and the fluid dynamics and magnetic forces acting on the arc may induce an unsteady behavior. In order to capture the dynamic behavior of a twin torch discharge, a 3D time dependent plasma arc model has been developed using a customized commercial code FLUENT form in both Local Thermodynamic Equilibrium (LTE) and non-LTE. A two temperature (2T) model has been developed taking into account only the thermal non-equilibrium effects in argon plasma. The main differences between LTE and 2T models results concern the increased extension of the horizontal section of the discharge and the predicted reduced (of about 60-80V) voltage drop between the electrodes when using a 2T model.