Psoriasis is a multifactorial disease of uncertain etiology that affects approximately 2% of the population (1). Psoriatic lesions are characterized by a clinical triad consisting of skin induration, scaling, and erythema. The histologic correlates of these clinical findings include inflammation, abnormal keratinocyte proliferation/terminal differentiation, and dermal angiogenesis. The inflammatory infiltrate, particularly pronounced at the dermal-epidermal junction, consists largely of activated T cells and antigen-presenting cells (APCs) and precedes the development of epidermal hyperproliferation (2). Increased levels of inflammatory cytokines have been detected in lesional psoriatic epidermis, which may result in the potentiation of T-cell activation (3) as well as hyperproliferation and accelerated differentiation of keratinocytes (4, 5). These and other data derived from T cell-based therapeutics (6-8) suggest that activated T cells play an important role in triggering and perpetuating the disease. Engagement of the B7 family of molecules on antigen-presenting cells with their T cell-associated ligands, CD28 and CD152 (cytotoxic T lymphocyte-associated antigen-4 [CTLA-4]), provides a pivotal costimulatory signal in T-cell activation. We investigated the role of the CD28/CD152 pathway in psoriasis in a 26-week, phase I, open-label dose-escalation study. The importance of this pathway in the generation of humoral immune responses to T cell-dependent neoantigens, bacteriophage φX174 and keyhole limpet hemocyanin, was also evaluated. Forty-three patients with stable psoriasis vulgaris received 4 infusions of the soluble chimeric protein CTLA4Ig (BMS-188667). Forty-six percent of all study patients achieved a 50% or greater sustained improvement in clinical disease activity, with progressively greater effects observed in the highest-dosing cohorts. Improvement in these patients was associated with quantitative reduction in epidermal hyperplasia, which correlated with quantitative reduction in skin-infiltrating T cells. No markedly increased rate of intralesional T-cell apoptosis was identified, suggesting that the decreased number of lesional T cells was probably likely attributable to an inhibition of T-cell proliferation, T-cell recruitment, and/or apoptosis of antigen-specific T cells at extralesional sites. Altered antibody responses to T cell-dependent neoantigens were observed, but immunologic tolerance to these antigens was not demonstrated. This study illustrates the importance of the CD28/CD152 pathway in the pathogenesis of psoriasis and suggests a potential therapeutic use for this novel immunomodulatory approach in an array of T cell-mediated diseases.