Recent studies demonstrate that 5-fluoro-2-oxindole inhibits neuropathic pain but the antinociceptive actions of this drug and its effects on the plasticity, oxidative and inflammatory changes induced by peripheral inflammation as well as on the effects and expression of µ-opioid receptors (MOR) have not been evaluated. In C57BL/6 male mice with inflammatory pain provoked by the subplantar administration of complete Freund’s adjuvant (CFA), we evaluated: (1) the antinociceptive actions of 5-fluoro-2-oxindole and its reversion with the HO-1 inhibitor, tin protoporphyrin IX (SnPP); (2) the effects of 5-fluoro-2-oxindole in the protein levels of mitogen-activated protein kinase (MAPK), Nrf2, NADPH quinone oxidoreductase1 (NQO1), heme oxygenase 1 (HO-1), oxidative stress marker (4-hydroxy-2-nonenal; 4-HNE), inducible nitric oxide synthase (NOS2), microglial markers (CD11b/c and IBA-1), and MOR in the spinal cord and/or paw of animals with inflammatory pain; (3) the antinociceptive effects of morphine in 5-fluoro-2-oxindole pre-treated animals. Treatment with 5 and 10 mg/kg of 5-fluoro-2-oxindole inhibited the allodynia and hyperalgesia induced by CFA in a different, time-dependent manner. These effects were reversed by SnPP. Treatment with 5-fluoro-2-oxindole increased the expression of NQO1, HO-1 and MOR and inhibited the CFA-induced upregulation of phosphorylated MAPK, 4-HNE, NOS2, CD11b/c and IBA-1 in spinal cords and/or paws. The local effects of morphine were improved with 5-fluoro-2-oxindole. This work reveals that 5-fluoro-2-oxindole inhibits the plasticity, oxidative and inflammatory responses provoked by peripheral inflammation and potentiates the antinociceptive effects of morphine. Thus, treatment with 5-fluoro-2-oxindole alone and/or combined with morphine are two remarkable new procedures for chronic inflammatory pain management.