As the development of chronic wound therapeutics continues to expand, the demand for advanced assay systems mimicking the inflammatory wound microenvironment in vivo increases. Currently, this is performed in animal models or in in vitro cell-based models such as cell culture scratch assays that more closely resemble acute wounds. Here, we describe for the first time a delayed scratch closure model that mimics some features of a chronic wound in vitro. Chronic wounds such as those suffered by later stage diabetic patients are characterised by degrees of slowness to heal caused by a combination of continued localised physical trauma and pro-inflammatory signalling at the wound. To recreate this in a cell-based assay, a defined physical scratch was created and stimulated by combinations of pro-inflammatory factors, namely interferon, the phorbol ester PMA, and lipopolysaccharide, to delay scratch closure. The concentrations of these factors were characterised for commonly used human keratinocyte (HaCaT) and dermal fibroblast (HDF) cell lines. These models were then tested for scratch closure responsiveness to a proprietary healing secretome derived from human Wharton’s jelly mesenchymal stem cells (MSCs) previously validated and shown to be highly effective on closure of acute wound models both in vitro and in vivo. The chronically open scratches from HaCaT cells showed closure after exposure to the MSC secretome product. We propose this delayed scratch closure model for academic and industrial researchers studying chronic wounds looking for responsiveness to drugs or biological treatments prior to testing on explanted patient material or in vivo.