Rationale
Amisulpride is approved for clinical use in treating schizophrenia in a number of European countries and also for treating dysthymia, a mild form of depression, in Italy. Amisulpride has also been demonstrated to be an antidepressant for patients with major depression in many clinical trials. In part because of the selective D2/D3 receptor antagonist properties of amisulpride, it has long been widely assumed that dopaminergic modulation is the proximal event responsible for mediating its antidepressant and antipsychotic properties.
Objectives
The purpose of these studies was to determine if amisulpride’s antidepressant actions are mediated by off-target interactions with other receptors.
Materials and Methods
We performed experiments that: (1) examined the pharmacological profile of amisulpride at a large number of CNS molecular targets and (2) after finding high potency antagonist affinity for human 5-HT7a serotonin receptors, characterized the actions of amisulpride as an antidepressant in wild-type and 5-HT7 receptor knock-out mice.
Results
We discovered that amisulpride was a potent competitive antagonist at 5-HT7a receptors and that interactions with no other molecular target investigated here could explain its antidepressant actions in vivo. Significantly, and in contrast to their wildtype littermates, 5-HT7 receptor knockout mice did not respond to amisulpride in a widely used rodent model of depression, the tail suspension test.
Conclusions
These results indicate that 5-HT7a receptor antagonism, and not D2/D3 receptor antagonism, likely underlies the antidepressant actions of amisulpride.