Keywords:MiR-15b Condylar hyperplasia IGF1 IGF1R BCL2 s u m m a r yObjective: This study aimed to explore potential microRNAs (miRNAs), which participate in the pathological process of condylar hyperplasia (CH) through targeting specific proliferation-and apoptosisrelated genes of chondrocytes. Methods: Insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R) and B-cell CLL/lymphoma 2 (BCL2) in CH cartilage were detected by real-time polymerase chain reaction (PCR), Western blot, immunohistochemistry and immunofluorescence. MiRanda and TargetScanS algorithms were used to predict certain miRNAs in CH chondrocytes concurrently modulating the above three genes. MiR-15b was screened and identified using real-time PCR. After transfection of miR-15b mimics or inhibitor into CH chondrocytes, expression of the above three genes was detected by real-time PCR and western blot, meanwhile, cell proliferation and apoptosis was examined by CCK8, cell cycle assays, flow cytometry and Hoechst staining. Dual luciferase activity was performed to identify the direct regulation of miR-15b on IGF1, IGF1R and BCL2. Results: Expression of IGF1, IGF1R and BCL2 increased in CH cartilage. Seven microRNAs concurrently correlated with IGF1, IGF1R and BCL2. Among them, only miR-15b significantly changed in CH chondrocytes. Overexpression of miR-15b in CH chondrocytes suppressed the expression of IGF1, IGF1R and BCL2, while it increased when miR-15b was knockdown. Furthermore, miR-15b suppressed their expression by directly binding to its 3 0 -UTR in these cells. Besides, miR-15b hampered chondrocytes proliferation through targeting IGF1 and IGF1R and accelerated chondrocytes apoptosis through targeting BCL2. Conclusion: Suppressed miR-15b contributed to enhanced proliferation capacity and weakened apoptosis of chondrocytes through augmentation of IGF1, IGF1R and BCL2, thereby resulting in development of CH.