“…There are fifteen K2P subtypes comprising six subfamilies in which the channel monomers assemble into dimers wherein each subunit contributes two conserved pore forming domains to make the channel pore (Brohawn et al, 2012;Dong et al, 2015;Feliciangeli et al, 2014;Lolicato et al, 2017;Miller and Long, 2012;Rödström et al, 2019). A range of physical and chemical signals control K2P function (Enyedi and Czirjak, 2010;Feliciangeli et al, 2014;Renigunta et al, 2015) and various K2P subtypes have emerging roles in a multitude of physiological responses and pathological conditions such as action potential propagation in myelinated axons (Brohawn et al, 2019;Kanda et al, 2019), anesthetic responses (Heurteaux et al, 2004;Lazarenko et al, 2010), microglial surveillance (Madry et al, 2018), sleep duration (Yoshida et al, 2018), pain (Alloui et al, 2006;Devilliers et al, 2013;Vivier et al, 2017), arrythmia (Decher et al, 2017), ischemia (Heurteaux et al, 2004;Laigle et al, 2012;Wu et al, 2013), cardiac fibrosis (Abraham et al, 2018), depression (Heurteaux et al, 2006), migraine (Royal et al, 2019), intraocular pressure regulation (Yarishkin et al, 2018), and pulmonary hypertension (Lambert et al, 2018). Although there have been recent advances in identifying new K2P modulators (Bagriantsev et al, 2013;Lolicato et al, 2017;Pope et al, 2018;Su et al, 2016;Tian et al, 2019;Vivier et al, 2017;Wright et al, 2019) and in defining key structural aspects of K2P channel pharmacolog...…”