Abstract:Although climate models predict that the impacts of climate change on the temporal variability of water levels in the St. Lawrence River will be seasonally-dependent, such a seasonal effect on the current variability of extreme water levels has never been analyzed. To address this, we analyzed the temporal variability of three hydrological variables (monthly daily maximums and minimums, as well as their ratio) of water levels in the St. Lawrence River measured at the Sorel station since 1912, as they relate to climate indices. As for stationarity, the shifts in the mean values of maximum and minimum water levels revealed by the Lombard method took place prior to 1970 for spring water levels, but after that year, for winter water levels. Changes in the winter stationarity are thought to mainly relate to the decreasing snowfall observed in the St. Lawrence River watershed after 1970. In contrast, for spring, these changes are likely primarily related to human activity (digging of the St. Lawrence Seaway and construction of dams). Two shifts in the mean values of fall minimum extreme water levels were highlighted. The first of these shifts, which occurred in the first half of the 1960s decade, can also be linked to human activity (digging of the St. Lawrence Seaway and construction of dams), whereas the second shift, observed after the 1970s for the months of November and December, can be linked to decreasing amounts of snow in winter. AMO (Atlantic Multidecadal Oscillation) is the climate index that is most frequently correlated negatively with the hydrologic variables, mainly in winter and spring.