2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom) 2015
DOI: 10.1109/coginfocom.2015.7390601
|View full text |Cite
|
Sign up to set email alerts
|

TrendMiner: Large-scale analysis of political attitudes in public facebook messages

Abstract: Abstract-This paper presents the methods and results of a project that collects and analyses public comments written in response to political posts on Facebook using natural language processing and social psychological methods in order to explore emotional attitudes and social behavior.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
1

Year Published

2019
2019
2019
2019

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 0 publications
0
3
0
1
Order By: Relevance
“…As a result, social activity shifts from real things to virtual machines [15]. Behavioral conclusions of social media users can be obtained by gathering information from different sources and analyzing the information and, user behavior [16]. The analysis of social media behaviors is an important thing for business [17].…”
Section: Social Mediamentioning
confidence: 99%
“…As a result, social activity shifts from real things to virtual machines [15]. Behavioral conclusions of social media users can be obtained by gathering information from different sources and analyzing the information and, user behavior [16]. The analysis of social media behaviors is an important thing for business [17].…”
Section: Social Mediamentioning
confidence: 99%
“…By gathering information from different resources and then analyzing that information, the behavior of the users can be examined. In this research, we have collected different studies about assessing human behavior with the help of social media and compared them according to the different methods used by different authors [3].…”
Section: Introductionmentioning
confidence: 99%
“…en Sentiment Analysis y el estudio de muestras en redes sociales como Facebook y Twitter, han analizado las opiniones y perspectivas que tienen los usuarios con respecto al género (Larson, 2017;Prabhakaran & Rambow, 2017;Keith, 2017), en relación al bienestar social (Schwartz et al, 2016) y para detectar estados de depresión en sus usuarios (Wang, Zhang, Ji, Sun & Wu, 2013) y política (Mihaltz & Váradi, 2015). También, se ha comprobado su efectividad como complemento a las encuestas electorales (Ceron et al, 2014); para predecir futuras tendencias en el ámbito de mercado (Asur & Huberman, 2010) y para detectar cambios emocionales significativos en un ambiente de elearning (Ortigosa, Martin & Carro, 2014).…”
Section: Introductionunclassified