ObjectivesHorizon-scanning for innovative technologies that might be applied to medical products and require new assessment approaches/regulations will help to prepare regulators, allowing earlier access to the product for patients and an improved benefit/risk ratio. In this study, we focused on the field of AI-based medical image analysis as a retrospective example of medical devices, where many products have recently been developed and applied. We proposed and validated horizon-scanning using citation network analysis and text mining for bibliographic information analysis.Methods and analysisResearch papers for citation network analysis which contain “convolutional*” OR “machine-learning” OR “deep-learning” were obtained from Science Citation Index Expanded (SCI-expanded) in the Web of Science (WoS). The citation network among those papers was converted into an unweighted network with papers as nodes and citation relationships as links. The network was then divided into clusters using the topological clustering method and the characteristics of each cluster were confirmed by extracting a summary of frequently cited academic papers, and the characteristic keywords, in the cluster.ResultsWe classified 119,553 publications obtained from SCI and grouped them into 36 clusters. Hence, it was possible to understand the academic landscape of AI applications. The key articles on AI-based medical image analysis were included in one or two clusters, suggesting that clusters specific to the technology were appropriately formed. Based on the average publication year of the constituent papers of each cluster, we tracked recent research trends. It was also suggested that significant research progress would be detected as a quick increase in constituent papers and the number of citations of hub papers in the cluster.ConclusionWe validated that citation network analysis applies to the horizon-scanning of innovative medical devices and demonstrated that AI-based electrocardiograms and electroencephalograms can lead to the development of innovative products.Article SummaryStrengths and limitations of this studyCitation network analysis can provide an academic landscape in the investigated research field, based on the citation relationship of research papers and objective information, such as characteristic keywords and publication year.It might be possible to detect possible significant research progress and the emergence of new research areas through analysis every several months.It is important to confirm the opinions of experts in this area when evaluating the results of the analysis.Information on patents and clinical trials for this analysis is currently unavailable.