An off-the-shelf scaffold with requisite properties could enable the viable treatment of irregular craniomaxillofacial bone defects. Notably, the scaffold should be conformally fitting, innately bioactive, and bioresorbable. In prior work, we developed a series of shape memory polymer (SMP) scaffolds based on crosslinked poly(ε-caprolactone) (PCL). These were capable of "selffitting" into complex bone defects when exposed to temperatures above the melt transition of the constituent PCL, either linear-PCL-diacrylate (linear-PCL-DA, T m ∼55 °C) or star-PCLtetraacrylate (star-PCL-TA, T m ∼45 °C) for the potential to improve tissue safety. To achieve favorably increased degradation rates versus PCL-only scaffolds, semi-interpenetrating networks (semi-IPNs) were formed by including linear-or star-poly(L-lactic acid) (PLLA). A potential limitation of these self-fitting scaffolds is the lack of bioactivity, which is essential to osteoinductivity and osseointegration. Herein, analogous composite scaffolds were formed with 45S5 bioglass (BG) to impart bioactivity. The solvent-cast particulate leaching fabrication method was adapted to introduce BG to the fused salt template, resulting in composites with BG concentrated on the pore wall surfaces rather than within pore struts. Composite scaffolds with good pore wall integrity were produced with 2.5, 5, and 10 wt % BG. All composite scaffolds exhibited non-brittle behavior and did not fracture with 85% strain. For semi-IPN composite scaffolds, PLLA crystallinity was lost, and mechanical properties were not appreciably altered versus the non-BG controls. Sufficient retention of PCL crystallinity led to excellent shape memory behavior. The inclusion of 5 and 10 wt % BG led to hydroxyapatite mineralization after 1 day of exposure to simulated body fluid, as well as increased rates of in vitro degradation.