This paper describes a Weather Impact Model (WIM) capable of serving a variety of predictive applications ranging from real-time operation and dayahead operation planning, to asset and outage management. The proposed model is capable of combining various weather parameters into different weather impact features of interest to a specific application. This work focuses on the development of a universal weather impacts model based on the logistic regression embedded in a Geographic Information System (GIS). It is capable of merging massive data sets from historical outage and weather data, to real-time weather forecast and network monitoring measurements, into a feature known as weather hazard probability. The examples of the outage and asset management applications are used to illustrate the model capabilities.