Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Abstract. The groundwater in a shallow, unconfined, lowlying coastal aquifer in Santala, southern Finland, was chemically characterised by integrating multivariate statistical approaches, principal component analysis (PCA) and hierarchical cluster analysis (HCA), based on the stable isotopes δ 2 H and δ 18 O, hydrogeochemistry and field monitoring data. PCA and HCA yielded similar results and classified groundwater samples into six distinct groups that revealed the factors controlling temporal and spatial variations in the groundwater geochemistry, such as the geology, anthropogenic sources from human activities, climate and surface water. High temporal variation in groundwater chemistry directly corresponded to precipitation. With an increase in precipitation, KMnO 4 consumption, EC, alkalinity and Ca concentrations also increased in most wells, while Fe, Al, Mn and SO 4 were occasionally increased during spring after the snowmelt under specific geological conditions. The continued increase in NO 3 and metal concentrations in groundwater indicates the potential contamination risk to the aquifer. Stable isotopes of δ 18 O and δ 2 H indicate groundwater recharge directly from meteoric water, with an insignificant contribution from lake water, and no seawater intrusion into the aquifer. Groundwater geochemistry suggests that local seawater intrusion is temporarily able to take place in the sulfate reduction zone along the freshwater and seawater mixed zone in the low-lying coastal area, but the contribution of seawater was found to be very low. The influence of lake water could be observed from higher levels of KMnO 4 consumption in wells near the lake. The integration of PCA and HCA with conventional classification of groundwater types, as well as with the hydrogeochemical data, provided useful tools to identify the vulnerable groundwater areas representing the impacts of both natural and human activities on water quality and the understanding of complex groundwater flow system for the aquifer vulnerability assessment and groundwater management in the future.
Abstract. The groundwater in a shallow, unconfined, lowlying coastal aquifer in Santala, southern Finland, was chemically characterised by integrating multivariate statistical approaches, principal component analysis (PCA) and hierarchical cluster analysis (HCA), based on the stable isotopes δ 2 H and δ 18 O, hydrogeochemistry and field monitoring data. PCA and HCA yielded similar results and classified groundwater samples into six distinct groups that revealed the factors controlling temporal and spatial variations in the groundwater geochemistry, such as the geology, anthropogenic sources from human activities, climate and surface water. High temporal variation in groundwater chemistry directly corresponded to precipitation. With an increase in precipitation, KMnO 4 consumption, EC, alkalinity and Ca concentrations also increased in most wells, while Fe, Al, Mn and SO 4 were occasionally increased during spring after the snowmelt under specific geological conditions. The continued increase in NO 3 and metal concentrations in groundwater indicates the potential contamination risk to the aquifer. Stable isotopes of δ 18 O and δ 2 H indicate groundwater recharge directly from meteoric water, with an insignificant contribution from lake water, and no seawater intrusion into the aquifer. Groundwater geochemistry suggests that local seawater intrusion is temporarily able to take place in the sulfate reduction zone along the freshwater and seawater mixed zone in the low-lying coastal area, but the contribution of seawater was found to be very low. The influence of lake water could be observed from higher levels of KMnO 4 consumption in wells near the lake. The integration of PCA and HCA with conventional classification of groundwater types, as well as with the hydrogeochemical data, provided useful tools to identify the vulnerable groundwater areas representing the impacts of both natural and human activities on water quality and the understanding of complex groundwater flow system for the aquifer vulnerability assessment and groundwater management in the future.
Abstract. The chemical characterization of groundwater in shallow, unconfined, low-lying coastal aquifer in Santala, southern Finland was identified by utilising the integrations of multivariate statistical approaches; principal component analysis (PCA) and hierarchical cluster analysis (HCA), with the stable isotope δ2H and δ18O, hydrogeochemistry and field monitoring data. HCA classified groundwater samples into 6 distinct groups that reveal the factors controlling temporal and spatial variations of groundwater geochemistry such as geology, anthropogenic sources from human activities, climate and surface water. High temporal variation of groundwater chemistry corresponds directly to precipitation. With increase in precipitation, KMnO4 consumption, EC, alkalinity and Ca concentrations also increase in most wells, while Fe, Al, Mn and SO4 are occasionally increased during spring after the snowmelt in specific geologic condition. The continued increase of NO3 and metals concentrations in groundwater indicates the potential contamination risk to aquifer. Stable isotopes of δ18O and δ2H indicate groundwater recharges directly from the meteoric water with insignificant contribution from lake water, and no seawater intrusion into the aquifer. Groundwater geochemistry suggests local seawater intrusion being temporary able to take place in the sulphate reduction zone along the fresh and seawater mixed zone in the low-lying coastal area but contribution of seawater was very low. The influence of lake water can be observed from the increases of KMnO4 consumption in wells nearby the lake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.