EditorialIn the fetal heart, the foramen ovale (open channel between the septum primum and the septum secundum) allows oxygenated blood returning from the umbilical vein to pass into the left heart and be pumped into the systemic circulation. The Eustachian valve between the inferior vena cava and the right atrium directs blood flow through the foramen ovale into the left atrium.The foramen ovale remains patent in up to a quarter of adults thus traditionally considered a normal variation. However, patent foramen ovale (PFO) is found to be more prevalent among patients having cryptogenic stroke in whom the mechanism for the ischemic stroke is not found despite an extensive evaluation of head and neck vessels and the heart. Paradoxical embolism across the PFO likely explains the stroke.
The PFO Closure Trials for Cryptogenic StrokeTo support this theory of paradoxical embolism closing PFO should reduce recurrence of ischemic stroke. The development of closure devices delivered through a trans-catheter route (without open-heart surgery) allows PFO closure to be performed safely with low morbidities. However, three randomized trials reported early in this decade (CLOSURE I [1], PC trial [2], and RESPECT [3]) individually failed to show a clear benefit of trans-catheter PFO device closure for secondary stroke prevention. In retrospect, this is partly due to the individually small-size cohorts and partly the short follow-up durations. More recently, a meta-analysis of patient-level data from CLOSURE I, PC, and RESPECT (with longer follow-up duration) found that PFO closure prevented recurrent ischemic stroke (adjusted hazard ratio [HR], 0.58; 95% confidence interval [CI], 0.34-0.99) [4]. Further, the Amplatzer PFO occluder device out-performed its counterparts, and received Food and Drug Administration (FDA) approval for patients aged 18-60 years with PFO and cryptogenic stroke.Last year, two randomized controlled PFO closure trials (CLOSE [5] and REDUCE [6]) with stricter enrolment criteria were published. CLOSE included patients aged 16-60 years with a cryptogenic stroke supported by imaging findings within the prior 6 months and a PFO with large inter-atrial shunt or atrial septal aneurysm. CLOSE also used stringent criteria to exclude patients with vascular disease which may be potentially causal (intra-cerebral small vessel disease or ≥ 30% stenosis of an artery supplying the brain). Over 5.3 years of mean follow-up, the closure group had a lower risk of recurrent stroke than the non-closure group (0% vs. 6%; HR, 0.03; 95% CI, 0-0.26) [5].REDUCE included patients aged 18-59 years with cryptogenic stroke (symptoms ≥ 24 hours or positive imaging) in the prior 6 months and a PFO; but without any stenosis of ≥ 50% of a major vessel supplying the brain, lacunar lesions on imaging, or uncontrolled stroke risk factors. After a median follow-up of 3.2 years, there was a lower risk of recurrent stroke in patients with than in patients without PFO closure (1.4% vs. 5.4%; HR, 0.23; 95% CI, 0.09-0.62) [6].