Data Envelopment Analysis is one of the paramount mathematical methods to compute the general performance of organizations, which utilizes similar sources to produce similar outputs. Original DEA schemes involve crisp information of inputs and outputs that may not always be accessible in real-world applications. Nevertheless, in some cases, the values of the data are information with indeterminacy, impreciseness, vagueness, inconsistent, and incompleteness. Furthermore, the conventional DEA models have been originally formulated solely for desirable outputs. However, undesirable outputs may additionally be present in the manufacturing system, which wishes to be minimized. To tackle the mentioned issues and in order to obtain a reliable measurement that keeps original advantage of DEA and considers the influence of undesirable factors under the indeterminate environments, this paper presents a neutrosophic DEA model with undesirable outputs. The recommended technique is based on the aggregation operator and has a simple construction. Finally, an example is given to illustrate the new model and ranking approach in details.