Sterically hindered
Lewis acid and base centers are unable to form
Lewis adducts, instead forming frustrated Lewis pairs (FLPs), where
latent reactivity can be utilized for the activation of small molecules.
Applying FLP chemistry into polymeric frameworks transforms this chemistry
into responsive and functional materials. Here, we report a versatile
synthesis strategy for the preparation of macromolecular FLPs and
explore its potential with the ring-opening reactions of cyclic ethers.
Addition of the cyclic substrates triggered polymer network formation,
where the extent of cross-linking, strength of network, and reactivity
are tuned by the steric and electronic properties of the ethers. The
resultant networks behave like covalently cross-linked polymers, demonstrating
the versatility of FLPs to simultaneously tune both small-molecule
capture and mechanical properties of materials.